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INTRODUCTION 

The world is becoming more digitalized than ever before. The workload of datacenters has tripled since 

2015 [1]. Despite huge progress in thermal management, traditional air-based cooling technology still 

represents a critical factor which significantly impacts datacenter operating costs and the environment. 

Depending on the size and operating conditions of a datacenter, a significant portion of the total energy 

consumption (up to 55%) is used to cool the servers. Therefore, the implementation of greener cooling 

technologies that can re-use the heat generated by the servers for other purposes (i.e. room heating, 

power generation, etc.) is becoming more and more attractive. The novel passive two-phase cooling 

technology presented in this article offers not only a very efficient way to manage the heat load of the 

servers, with a substantially higher heat flux limit versus traditional technology, but also offers a feasible 

and economically viable way to re-use that energy.  

THERMAL AND FLUIDIC PHENOMENA IN THE OPERATION OF A SINGLE LOOP 

THERMOSYPHON   

A single loop thermosyphon is composed of four elements: (i) the evaporator, where the absorbed latent 

heat changes the working fluid’s phase from liquid to a liquid-vapor mixture; (ii) the condenser, where 

the latent heat rejection changes the vapor back to the liquid phase; (iii) the riser, which transports the 

liquid-vapor mixture upward from the evaporator to the condenser; (iv) the downcomer, which carries 

the liquid downward from the condenser to the evaporator. A schematic of a single loop thermosyphon 

is reported in Figure 1. The condenser must be placed above the evaporator to favor buoyantly driven 

passive flow circulation, and due, to the small channel sizes, slug and annular flows are the main flow 

patterns occurring during the operation of a thermosyphon [2, 3].  

 

Figure 1. Schematic of a single loop thermosyphon indicating the main components and flow direction. 
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As general design guidelines for electronics cooling applications, it is important to ensure a subcooled 

liquid at the evaporator inlet and a sufficiently low vapor quality at the evaporator outlet to avoid four 

phenomena related to the two-phase flow in micro-channels and thermosyphons in particular: 

• Dry-out: the vapor phase, with its poor heat transfer characteristics, may blanket the wall when 

the vapor quality approaches 1. Therefore it is imperative to have a fully wetting flow at the 

evaporator outlet. Generally, the thermosyphon can safely operate with vapor quality in the range 

of between 0.1 and 0.5. Note: vapor quality is defined as the ratio between the mass of vapor flow 

divided by the total mass flow rate (liquid and vapor); 

• Instabilities: a subcooled liquid at the evaporator inlet eliminates pressure-related instabilities in 

micro-channels and Ledinegg’s instability in a thermosyphon loop [4]. 

• Backflow: at high heat loads, the rapid growth of vapor may push the flow backward, triggering 

flow instabilities and decreasing thermal performance. The subcooled liquid prevents this from 

occurring, but it must be coupled with careful design of the inlet manifold and flow distribution in 

the evaporator. 

• Gravity-driven flow: a single loop thermosyphon has two working regimes. The gravity-dominant 

regime occurs when the buoyancy in the riser is the primary force, up to when the heat duty creates 

sufficient vapor qualities to change to friction-dominant flow. A thermosyphon should be designed 

to operate in a gravity-dominant regime as the mass flow rate increases with the heat load, and the 

subcooled liquid at the evaporator inlet serves this purpose [5]. 

Subcooling at the inlet and the latent heat transfer both affect the thermal performance. They are related 

to the heat load through the energy balance on the working fluid: 

( )p sub lv outQ m c T h x=  +   

where Q (W) is the total heat load (comprised of subcooled and saturated heat loads), 𝑚̇ (kg/s) is the 

coolant mass flow rate, cp (J/kg/K) is the specific heat at constant pressure, ΔTsub (K) is the subcooling 

at the evaporator inlet, Δhlv (J/kg) is the latent heat of vaporization and xout (-) is the outlet vapor quality. 

To minimize the total thermal resistance, the subcooled heat load needs to be minimized, while the 

saturated heat load needs to be maximized. Therefore, it is paramount to find the right trade-off together 

with the design guidelines reported above. 

TEST RESULTS WITH A SINGLE LOOP THERMOSYPHON PROTOTYPE   

A newly designed thermosyphon prototype suitable for server-level cooling is depicted in Figure 2; 

Figure 3 illustrates a schematic diagram including the main components and measurements. The main 

components of the test setup are the following:  

• A low-height water-cooled thermosyphon designed for cooling 2-U servers. The evaporator was 

directly attached to the heat source via a highly conductive thermal grease (Thermal Grizzly 

Kryonaut: thermal resistance of 0.0032 K/W and thermal conductivity of 12.5 W/m/K);  

• A pseudo-chip with a footprint area of 4 x 4 cm2 designed with four cartridge heaters in parallel, 

that were located in a copper block. Four calibrated K-type thermocouples (accuracy of ± 0.25 °C 

were used to measure the mean heater temperature. The junction (evaporator base) temperature 

was evaluated from the mean heater temperature and a 1-D heat conduction calculation accounted 

for the thermal resistance through the copper and thermal interface material. Another K-type 

thermocouple was attached on the adiabatic section of the riser to measure the saturation 

temperature;  
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• A thermal bath circulated cold water at a given temperature and flow rate on the secondary side of 

the thermosyphon. Its flow rate was indirectly determined from an energy balance using the 

water’s temperature rise, with K-type thermocouples attached on the inlet and outlet tubes, and 

imposed heat load, assuming negligible heat loss to the ambient;  

• A customized charging station (not shown here) was designed and fabricated to fill the 

thermosyphon with R1234ze up to the desired charge;  

• An electrical circuit (a power supply, 4 cartridge heaters and a shunt resistor) were used to power 

the pseudo-chip and to accurately measure the heat delivered to the refrigerant flow (maximum 

value of 333 W, but thermosyphon tests were executed up to about 200 W);  

• A data acquisition system was coupled to LabView to control the operating conditions, monitor 

the thermal performance over time and record the measured parameters (i.e. temperatures, power, 

etc.), which were post-processed separately.  

 

Figure 2. Experimental setup built at Nokia Bell Labs to characterize thermal performance of the thermosyphon 

operating with R1234ze. The heat was dissipated to a secondary side water cooling loop.  

         

         (a)                                                                                          (b) 

Figure 3. Schematic diagram of the thermosyphon: (a) front view, where the red arrow indicate the refrigerant 

flow direction; (b) top view showing the condenser secondary side and water flow direction. 

Table 1 reports the external dimensions of the thermosyphon (the internal features are confidential). 
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Table 1. Dimensions of the thermosyphon. 

PARAMETER VALUE 

Evaporator length, width and depth 60 x 60 x 9.50 (mm) 

Riser height 42 (mm) 

Riser external diameter 10 (mm) 

Condenser length, width and depth 60 x 60 x 18.50 (mm) 

Downcomer height 42 (mm) 

Downcomer external diameter 8 (mm) 

Total thermosyphon height 70 (mm) 

The cooling capabilities of the server-level thermosyphon were evaluated under transient and steady-

state conditions. In particular, the results presented in this section refer to a secondary side water mass 

flow rate in the condenser of 364 kg/h and water inlet temperature of 15°C and a maximum heat load 

of 200 W (corresponding to a footprint heat flux of 16.3 W/cm2) using the refrigerant R1234ze as the 

working fluid. This is a very promising refrigerant for electronics cooling applications due to its 

negligible environmental impact (i.e. Global Warming Potential is less than 1) [6]. 

 
(a) 

 
(b) 

Figure 4. Proof-of-concept experiment over 2 hours with step changes in heat load from 50 W to 200 W: (a) mean 

heater temperature of four temperature measurements inside the copper block (one per heater); (b) thermosyphon 

internal pressure over time calculated from the saturation temperature.   



5 
 

Figures 4(a) and 4(b) depict the server-level thermosyphon thermal performance with a maximum 

heater temperature of 46°C at the maximum power of 200 W, while the corresponding system pressure 

was measured to be only 5.8 bar. No temperature overshoots or pressure fluctuations were observed, 

meaning that the thermosyphon offered stable cooling over a wide range of changing heat loads. Also, 

rapid thermal responses and smooth transients were observed during the start-up operations at the times 

of 300 s (0-100 W) and 6300 s (0-70 W). This is due to the fact that passive two-phase flow instabilities 

were minimized by ensuring the right level of liquid in the downcomer in order to prevent condenser 

flooding and to balance the total pressure drop in the loop (the latter was important to avoid intermittent 

flow in the evaporator which may induce partial dry-out). The temperature and pressure measurements 

followed similar trends and they both increased with the heat load, due to the higher vapor formation 

rate in the closed system.  

Figure 5 shows the total thermal resistance as a function of the heat load. Conduction thermal resistance 

played a negligible role in the heat transfer as the gravity-driven two-phase flow circulation was 

triggered at very low heat loads (3-5 W). Overall, the total thermal resistance decreased with increasing 

heat load due to the enhancement of the boiling process due to the higher refrigerant mass flow rate, 

vapor quality and heat flux. The change in the thermal resistance slope at about 30 W coincided with 

the enhanced heat transfer performance when changing from slug-plug flow to annular flow in the 

evaporator. The minimum value of thermal resistance was about 0.113 K/W when the heat load was 

120 W.           

   

Figure 5. Total (thermosyphon) thermal resistance as a function of the heat load. This was evaluated as the ratio 

between the temperature difference between the junction to water-inlet divided by the imposed heat load. 

CALCULATION OF WORKING FLUID’S MASS FLOW RATE 

The thermosyphon’s working fluid mass flow rate could not be directly obtained through single-phase 

pressure drop measurements [7] or energy balance calculations [8] due to the small form factor of the 

system. A commercial code [9, 10] was then used to estimate the thermosyphon mass flow rates. 

Specifically, the inputs needed to solve for the mass flow rates were the full geometry, fluids (R1234ze 

and water), operating conditions and measured thermal resistance curve (see Figure 5). This in-house 

simulator has already been shown to be accurate in validations against many independent thermosyphon 

databases [8, 11-14].  

Figure 6 depicts the simulated thermosyphon mass flow rates as a function of the heat load. As expected, 

the mass flow rate increased with the heat load due to the larger system driving force (buoyancy in the 

riser), which was able to overcome the total pressure drop in the thermosyphon (evaporator, riser, 
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downcomer and condenser). The server-level thermosyphon was seen to be operating in the desired 

gravity-dominant regime [5].  

 

Figure 6. Predicted thermosyphon mass flow rate as a function of the heat load. 

Figure 7 presents the corresponding outlet vapor quality as a function of the heat load, calculated 

through an energy balance across the evaporator under the assumption of negligible heat loss to ambient 

(reasonable as the thermosyphon is fully insulated). The highest exit vapor quality was 29%, which was 

well below the critical value of 55% at the onset of dry-out (based on the simulated threshold value 

from the code). 

 

Figure 7. Evaporator outlet vapor quality as a function of the heat load. 

TWO-PHASE COOLING IMPLEMENTATION 

The envisioned cooling technology applied to an entire server rack is presented in Figure 8. In particular, 

this cooling technology operates with numerous server-level thermosyphons in order to dissipate the 

heat produced by the large heat sources (i.e. microprocessors, memories, etc.) into the two-phase micro-

evaporators and out through the two-phase micro-condensers [8]. Then, the heat is transferred to rack-

level thermosyphons designed with a common overhead compact condenser, which dissipates the total 

heat from the server rack (20-100 kW or more) into the datacenter's water cooling loop [15]. The low 

power components (i.e. motherboards, lighting, etc.) can be air-cooled and the warm air is rejected into 

the room.  
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Figure 8. Concept of the proposed cooling technology for high power server racks [15]. The experimental results 

and thermal and fluidic phenomena in the operation of multiple thermosyphons in parallel (instabilities, flow 

regulation, etc.) are not addressed here as they represent the next step of this study.      

This technology provides high thermal performance due to two-phase heat removal from server-to-rack-

level, coupled with a significant energy savings (fewer server-level fans, air movers/blowers and 

CRAC/CRAH units). In addition, thanks to the low overall thermal resistance, the secondary side water 

cooling loop can operate at relatively high temperatures, which makes this technology suitable for waste 

heat recovery (i.e. distribute to a district heating network or use to enhance the energy efficiency of a 

power plant [16]).   

CONCLUSIONS 

The present paper describes and presents test results for an innovative passive two-phase cooling 

technology for next-generation high-performance computers, which provides higher energy efficiency 

compared to air- and liquid-cooling technologies deployed today. The experimental study presented in 

this article was mainly focused on the thermal performance characterization of a low-height 

thermosyphon to be used in 2-U servers. Experimental results demonstrated very good heat transfer 

performance and stable cooling capabilities over a wide range of heat loads. The present cooling 

technology enables high heat transfer performance, low noise level, scalability towards higher heat 

dissipations and improved reliability while using an environmentally friendly refrigerant (R1234ze) as 

the working fluid. 
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five books and over 250 journal papers on two-phase flow heat transfer and micro-two-phase cooling 

systems for electronics cooling. He received the Nusselt-Reynolds Prize in 2017, the ASME Journal of 

Heat Transfer Best Paper Award in 1998, the United Kingdom’s Institute of Refrigeration J.E. Hall Gold 

Medal in 2008, the ASME Heat Transfer Memorial Award in 2010, the IEEE Richard Chu ITHERM Award 

in 2019 and the ASME Allan Krause Thermal Packaging Medal at InterPACK 2019. He obtained his PhD 

at Oxford University and he founded the Virtual International Research Institute of Two-Phase Flow and 

Heat Transfer to promote research collaborations and education. 

 


