

Solder and Braze Alloys

Honeywell Electronic Materials makes a wide range of solder and brazing alloys in a variety of forms including wire and preforms.

COMPOSITION	DSC @ 20 [°] C/min WORKING		EQUILIBRIUM (C)		DENSITY	STRENGTH	
(wt.%)	Melting	Freezing	(°C)	Liquidus	Solidus	(g/cm³)	(MPa)
Sn				23	32	7.28	
Sn 5Pb	İ	İ		225	183	7.42	
Sn 10Pb				220	183	7.55	
Sn 36Pb 2Ag			210 - 230	240	179	ĺ	33.2
Sn 36.1Pb 1.4Ag			210 - 230	17	79	8.41	31.3
Sn 37Pb			210 - 230	183		8.40	26.7
Sn 50Pb				218 183		8.87	1
Sn 3.5Ag	224	179	250 - 280	22	21	7.37	21.3
Sn 5Ag				240	221	7.39	
Sn 10Ag				295	221	7.51	1
Sn 20Ag			350 - 380	370	221		
Sn 25Ag 10Sb	237	223	340 - 400	395	228	7.91	109.4
Sn 5Sb				240	232	7 25	47.0
Sn 8 5Sb	251	234	260 - 320	246	236	7.26	52.2
Sn 97n	201	201	200 020	10	200	7.20	02.2
Ph				327		11.27	
Ph 3 5Sn				315 310		11.00	
Ph 54g 59n				210	2010	11.00	
Pb 5Sp 2 5Ag	207	202	220 250	23	007	11.00	07.0
Pb 55h 2.5Ag	216	290	220 250	290	207	11.04	25.0
PD 3311	205	291	220 250	200	075	10.74	20.0
Pb 105n	305	284	330 - 350	302	2/0	10.74	30.2
Pb 15511				200	103	10.48	
Pb 20Sh				280	183	10.21	
Pb 30Sh				257	183	9.72	
Pb 40Sh	011	005	0.40 000	238	183	9.28	
Pb 1.5Ag 1Sn	314	295	340 - 360	309	301	11.28	31.9
Pb 2.5Ag				304		11.33	
Pb 2.5Ag 2Sn	315	300	340 - 360	309	305	11.20	31.5
Pb 10Sb	250	236	280 - 300	243	238	10.60	
Pb 10Sb 2Sn	252	234	280 - 300			10.47	64.6
Pb 10Sb 10Sn	251	230	280 - 300	245 240		10.01	39.3
Pb 5In 2.5Ag			340 - 360	300		11.02	29.3
Pb 50In				209	180	8.86	
Ag				96	51	10.50	
Ag 5Cu 2.9Ge 0.075As	ļ	ļ		940	800	10.11	
Ag 24Cu 14.5In				705	630	9.50	
Ag 28Cu				780		10.01	ļ
Ag 3Si	ļ			840		9.49	
In				157		7.31	
In 48Sn				118		7.30	
In 15Pb 5Ag				149		7.85	
In 3Ag				141		7.38	
Au				1063		19.30	
Au 20Sn				280		14.51	
Au 2Si				800 363		16.92	
Au 3.15Si				363		15.70	
Au 12Ge				356		14.67	
Bi				271		9.80	
Bi 42Sn				138		8.56	
Alloy 31	265	225	340–400	257	660	9.63	72.6
Alloy 37	270	213	340–400	257	710	9.74	62.0

Please See Important Notes on Back Page

PACKAGING MATERIALS DATA SHEET

Solder and Braze Alloys

NOTES

- 1. Not all of the alloys and elements listed are usable for soldering and brazing. Several are included for reference purposes only.
- Honeywell does not manufacture all of these alloys. Honeywell routinely ships the ones listed in **blue boldface** type. Please contact your Honeywell representative to inquire about manufacture of other alloys, either on the list or to be developed.
- 3. DSC is Differential Scanning Calorimetry in which the heat flow in and out of a sample is measured as the sample temperature is raised or lowered at a given rate.
- 4. Melting is defined as the largest DSC peak during heating at a rate of 20°C/min while freezing is the largest peak during cooling at the same rate. These temperatures describe the melting and freezing behavior during soldering and brazing much better than the equilibrium temperatures.
- 5. The working temperature range is based upon experience or is estimated to be approximately 30 to 50°C above the melting temperature (not the liquidus temperature). Additional considerations such as the wetting behavior of the alloy, atmosphere, use of flux, and nature of the package will affect this.
- Equilibrium temperatures are based upon either the literature or DSC at 1°C/min. A single temperature indicates that the alloy undergoes an invariant reaction passing directly from the solid to the liquid.
- 7. The strength was evaluated in tension at 25°C using a 30mil (0.76mm) extruded wire.

Useful Conversion Factors

- 1 Troy Ounce = 31.1035 g
- 1 g/cm³ = 0.5269 T.O./in³
- $T (^{\circ}C) = T (K) 273.15 = 1.8 [T (^{\circ}F) 32]$

Honeywell Electronic Materials

USA: 1-509-252-2102 China: 86-21-28942481 Germany: 49-5137-999-9199 Japan: 81-3-6730-7092 Korea: 82-2-3483-5076 Singapore: 65-6580-3593 Taiwan: 886-3-6580300 ext.312 www.honeywell.com/sm/em

Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, express or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required. DS0951011Rev5 @2011 Honewell International Inc.

